Matlab 基础知识——矩阵操作及运算(矩阵、数组区别)

看论文时,经常看到矩阵,但在记忆里又看到数组。那么问题来了,矩阵和数组分别是什么?二者有什么区别?看论文时,经常看到矩阵,但在记忆里又看到数组。那么问题来了,矩阵和数组分别是什么?二者有什么区别?

在数学上,定义m×n个数{a_{ij}}(i=1, 2…, m ; j=1, 2,… n)排成的mn列的数表示为mn列的矩阵,并且用大写加粗黑色字母表示。

                                                                                    {\mathbf{A}} = \left[ \begin{gathered} {a_{11}}{\text{ }}{a_{12}}{\text{ }} \cdots {\text{ }}{a_{1n}} \hfill \\ {a_{21}}{\text{ }}{a_{22}}{\text{ }} \cdots {\text{ }}{a_{2n}} \hfill \\ {\text{ }} \text{ }\vdots {\text{ }}\text{ }\text{ } \vdots {\text{ }} \text{ }\text{ }\ddots {\text{ }}\text{ }\text{ } \vdots \hfill \\ {a_{m1}}{\text{ }}{a_{m2}}{ \cdots{a_{mn}} \hfill \\ \end{gathered} \right]

 

只有一行的矩阵:{\bf{A}} = \left( {​{a_1}{\rm{ }}{a_2}{\rm{ }} \cdots {\rm{ }}{a_n}} \right),也称之为行向量

只有一列的矩阵,也称之为列向量

                                                                                   {\bf{A}} = \left( \begin{array}{l} {a_1}{\rm{ }}\\ {a_2}\\ {\rm{ }} \text{ }\vdots \\ {a_m} \end{array} \right)

矩阵最早来自于方程组的系数即常数所构成的方阵,这一个概念有19世纪英国数学家凯利首先提出。

数组是在程序设计中,为了处理方便,把具有相同类型的若干变量按有序的形式组织起来的一种形式。这些按序排列的同类数据元素的集合称之为数组。

在Matlab中,一个数组可以分解为多个数组元素,这些数组元素可以是基本数据类型或是构造类型。因此按数组元素的类型不同,数组又可以分为数值数组、字符数组、单元数组、结构数组等各种类别。

看完上面的内容,矩阵和数组的区别似乎懂了一点。矩阵和数组在Matlab中存在很多方面的区别:

(1)矩阵是数学的概念,而数组是计算机程序设计领域的概念;

(2)作为一种变换或映射算符的体现,矩阵运算有着明确而严格的数学规则。而数组运算是Matlab软件定义的规则,其目的是为了使数据管理方便,操作简单,命令形式自然,执行计算有效。

二者联系主要体现在:在Matlab中,矩阵是以数组的形式存在的。因此,一维数组相当于向量;二维数组相当于矩阵。所以矩阵是数组的子集。

 

对矩阵的基本操作,主要有矩阵的构建、矩阵维度和矩阵大小的改变、矩阵的索引、矩阵的属性信息的获取、矩阵结构的改变等。对于这些操作,Matlab中都有固定的指令或者相应的库函数与之相对应。在程序用到的时候,每次都要上网查,网上的很散。这里,我对我经常用的做了总结。以后用到可以查阅。

1、矩阵下表引用

 

   表达式(Matlab程序)

                                         函数功能

1

A(1)

将二维矩阵A重组为一维数组,返回数组中第一个元素

2

A(: , j)

返回二维矩阵A中第 j 列 列向量

3

A( i , :)

返回二维矩阵A中第 i 行 行向量

4

A(: , j : k)

返回二维矩阵A中第 j 列到第 k列 列向量组成的子矩阵

5

A( i : k , :)

返回二维矩阵A中第 i 行到第 k行 行向量组成的子矩阵

6

A( i : k , j : m)

返回二维矩阵A中第 i 行到第 k 行 行向量

和第 j 列到第 m 列 列向量的交集组成的子矩阵

7

A(:)

将二维矩阵A中得每列合并成一个列向量

8

A( j : k)

返回一个行向量,其元素为A(:)中的第 j 个元素到第 k 个元素

9

A([ j1 j2…])

返回一个行向量,其元素为A(:)中的第 j1,j2…个元素

10

A(: , [ j1 j2 …])

返回矩阵A的第 j1 列、第 j2 列等的列向量

11

A([ i1 i2 …] : ,)

返回矩阵A的第 i1 行、第 i2 行等的行向量

12

A([ i1 i2 …] , [ j1 j2 …])

返回矩阵A的第 j1列、第 j2 列等和矩阵A的第 i1 行、第 i2 行等的元素

下面将常用的几个举例说明:

例如:A=[1  2  3  4  5;

         12 12 14 56 657;

         23 46 34 67 56 ];

(1)将二维矩阵A转化成一维矩阵(列向量):Matlab 默认将其转化成列向量,需要行向量转置即可。

 Matlab程序:   A(:)  %将二维矩阵其转化成列向量

 

(2)读取矩阵取前N行或N列的方法

         Matlab程序:

         A(1:2,:)  %读取矩阵A前2行

         A(:,1:3)  %读取矩阵A前3列

 

(3)求矩阵中每行或每列的最大值和最小值

         ① 找矩阵A每列的最大值:[max_A,index]=max(A,[],1);

              其中,max_A是最大的数值,index是最大的数值所处的位置

 

        ② 找矩阵A每行的最大值:[max_A,index]=max(A,[],2);

             其中,max_A是最大的数值,index是最大的数值所处的位置

 

同理可求出每行,每列的最小值。

       ③ 找矩阵A每列的最小值:[min_A,index]=min(A,[],1);

            其中,min_A是最小的数值,index是最小的数值所处的位置

 

      ④ 找矩阵A每行的最小值:[min_A,index]=min(A,[],2);

          其中,min_A是最小的数值,index是最小的数值所处的位置

 

2、矩阵合并

已知矩阵:

A=[1   2  3  4  5;

   12 12 14 56 657;

   23 46 34 67 56];

B=[1 1 1 1 1;

     2 2 2 2 2;

     3 3 3 3 3];

(1)矩阵A,B左右合并:horzcat(A,B); %矩阵A,B左右合并

(2)矩阵A,B上下合并:vertcat(A,B); %矩阵A,B上下合并

 

3、矩阵运算(加、减、乘、除、点乘、点除等)

 

(1)A+B; 表示矩阵A和矩阵B相加(各个元素对应相加);

(2)A-B; 表示矩阵A和矩阵B相减(各个元素对应相减);

(3)A*B; 表示矩阵A和矩阵B相乘;

(4)A.*B; 表示矩阵A和矩阵B对应元素相乘(点乘);

(5)A/B; 表示矩阵A与矩阵B相除法;

(6)A./B; 表示矩阵A和矩阵B对应元素相除(点除);

(7)A^B; 表示矩阵A的B次幂;

(8)A.^B; 表示矩阵A的每个元素的B次幂。

Matlab平台提供了大量的运算函数,很强势。下面列举了常用的函数

 

        函数

                      运算法则

1

exp(x)

求以e为底数的x次幂

2

log(x)

求以e为底数对x值取对数

3

Log10(x)

求以10为底数x值取对数

4

sqrt(x)

求x的平方根

5

sin(x)

正弦函数

6

cos(x)

余弦函数

7

tan(x)

正切函数

8

asin(x)

反正弦函数

9

acos(x)

反余弦函数

10

atan(x)

反正切函数

11

mode(a,b)

a与b相除取余数

12

min(a,b)

返回a, b中较小的数值

13

max(a,b)

返回a, b中较大的数值

14

mean(x)

求x的列平均数(列平均)

15

median(x)

求x的列中位数(列中位数)

16

sum(x)

x中各个列之间的元素求和

17

rank(x)

X矩阵的秩

 

参考资料

[1] https://blog.csdn.net/yundanfengqing_nuc/article/details/49246477

[2] http://blog.sina.com.cn/s/blog_70c7b3780100ru11.html

[3] https://blog.csdn.net/carrie8899/article/details/8500088

 


如果觉得内容还不错的话,欢迎点赞、转发、收藏,还可以关注微信公众号、CSDN博客、知乎。
 

1. 微信公众号:

2. CSDN博客:https://xiongyiming.blog.csdn.net/

3. 知乎:https://www.zhihu.com/people/xiongyiming

 

©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页